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In order to describe the umbrella inversion mode, which is characteristic of AB3-type molecules, we have
introduced an alternative hyperspherical coordinate set based on a parametrization of Radau-Smith orthogonal
vectors and have considered constraints which allow us to enforce the C3V symmetry. Structural properties
and electronic energies at equilibrium and barrier configurations have been obtained at MP2 and CCSD(T)
levels of theory. Energy profiles have been calculated using the CCSD(T) method with an aug-cc-pVQZ
basis set. The NH3 and H3O+ umbrella inversion levels are obtained by the hyperquantization algorithm for
a one-dimensional calculation, using a specially defined hyperangle as the inversion coordinate. The results
are compared with experimental and theoretical energy levels, in particular, with those obtained by calculations
based on two-dimensional models. The emerging picture of the umbrella inversion based on this hyperangular
coordinate compares favorably with respect to the usual valence-type description.

1. Introduction

Tetratomic molecules, such as NH3 and H3O+ considered in
this paper, exhibit a characteristic mode, the “umbrella inver-
sion”. Such a mode of the intramolecular motion can be viewed
as one of the simplest mechanisms of a chirality changing
process (this at least from a classical mechanics viewpoint,
which permits one to distinguish among the hydrogen atoms,
or even quantum mechanically if they were properly isotopically
labeled). Indeed, the problem of the inversion of chirality in
molecules is of fundamental importance in chemistry, primarily
because of selectivity for different enantiomers of the interac-
tions in biological systems.1 In previous work, we have
extensively investigated the case of chirality inversion due to
torsion around the -OO- and -SS- bonds. As the prototypical
example involving four atoms or groups bound as a sequential
chain, H2O2 presents an out-of-plane configuration, and the
torsion around the dihedral angle HOOH leads to an inversion
of chirality.2,3 For an extensive treatment of this topic, see refs
2-6 and references therein, where, in particular, advantages
have been shown of an approach based on coordinate sets
obtained by a hyperspherical parametrization of orthogonal
Jacobi-type vectors. In a similar spirit, we approached here
another possible connectivity of four atoms, namely, that
corresponding to the ramified one, exemplified by the cases of
NH3

7 and H3O+ 8 (AB3-type molecules). Both systems show a
similar pyramidal structure, where the atom A is bound to three
B atoms. In this case, the inversion of chirality due to the spatial
orientations of the bonds follows a different mechanism referred
to as umbrella inversion.

In this work, we study the umbrella inversion motion in
hyperspherical coordinates, obtained by a parametrization of

Radau-Smith9 orthogonal vectors. The hyperspherical param-
etrization permits an extremely convenient representation of the
vibro-rotational modes of the NH3 and H3O+ systems, leading
to a very simple kinetic energy operator. Indeed, we show that
the umbrella inversion motion can be studied to first order,
varying only one hyperangle.10-12 This particular angle, here
introduced enforcing C3V symmetry in the Radau-Smith vector
parametrization, remarkably coincides with that recommended12

as a collective coordinate for the four-body problem in the
symmetrical (inertial) parametrization. This angle is also defined
in such a way that the corresponding part of the kinetic energy
operator has a convenient form which can be solved by the
hyperquantization algorithm.13-15 This algorithm was originally
developed for scattering problems, and this is the first time that
it is used to calculate vibrational levels of a molecule. The
reasons that led us to choose this approach are essentially based
on the inherent simplicity of implementation and, as it is also
shown here, on its fast performance.

The umbrella inversion levels for the two tested systems are
calculated introducing also the separation in symmetries of the
wave functions,16 obtaining significant simplifications and
reductions of calculation time. The results are in agreement with
data available in the literature, and a remarkable result is that
our inversion energy levels, calculated by a one-dimensional
model, compare favorably with those obtained by two- or full-
dimensional calculations. As shown in cases such as H2O2 and
H2S2,17,18 this is encouraging for the study of intermolecular
interactions where a feasible quantum mechanical investigation
of collisional dynamics requires a reduction of the number of
active degrees of freedom.

The paper is organized as follows. In section 2, the coordinates
of the problem are defined, and the relative Hamiltonian is
considered. In section 3, the hyperquantization algorithm is briefly
described, while in section 4, results obtained for the two systems
under analysis are presented. In section 5, a preliminary discussion
of the two-dimensional problem and adiabatic eigenvalue curves
are presented. Remarks and perspectives are presented in section
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6. In Appendix A, some details can be found about the separation
in symmetries of doubly symmetric matrices.

2. Coordinates and Hamiltonian for the AB3 Umbrella
Inversion Problem

Pyramidal molecules AB3 exhibit a double minimum potential
energy profile whose corresponding configurations preserve the
C3V symmetry. When the system crosses the barrier separating
the two identical configurations, an inversion motion, commonly
known as umbrella inversion, takes place. This suggests that a
simple picture for a model of inversion, which is interesting
because it involves also a change of chirality, can rely
particularly on the hypothesis of symmetry conservation along
the inversion path, where a single coordinate may be suitable
to describe the process with sufficient accuracy. The optimal
choice for such a coordinate is not obvious, especially if one
aims at giving an approach to be valid in a number of cases.

The kinetic energy quantum operator in mass-scaled Radau-
Smith vectors for four bodies,10,11 after separation of the center
of mass motion, is

where m is the total mass of the system and the vectors xi (i )
1, 2, 3) represent the positions of the three particles B with
respect to the canonical point E.10,11 Figure 1 shows the
Radau-Smith vectors for a pyramidal AB3 molecular system,
along with the position of points D and O (the center of the
Cartesian reference frame) and the canonical point E of the
vectors xi (i ) 1, 2, 3), whose position is found requiring that
rDE

2 ) rDOrDA. The three equal angles BÂB are denoted as Θg

while the angles between the z axis and the AB bonds are
denoted as θg. The superscript g stands for “geometrical”
parametrization. The angles Θ and θ and the distances rEB are

related to the geometrical angles θg and Θg and to the modules
of the vectors xi and the hyperradius F, respectively, through
the simple formulas in section 2.2.

The extreme simplicity of the operator of eq 1, due to the
absence of coupling terms, contrasts with the form of analogous
operators obtained using bond lengths, bond angles, and dihedral
angles, where mixed second-order derivatives (see, for example,
eq 9 in ref 7) lead to cumbersome expressions, making it difficult
to develop efficient computational schemes. In fact, a simple
modification of the geometrical coordinate set permits one to
obtain diagonal kinetic energy operators, such as that of eq 1,
preserving the physical meaning of the geometrical parameters.10

Starting from eq 1, constraints can be applied in order to
implement the hypothesis of symmetry conservation along the
inversion path.

In spherical coordinates, xi ) (ri,ϑi,�i) (i ) 1, 2, 3), and eq
1 becomes

where ri ) |xi| g 0, 0 e ϑi e π, and 0 e �i < 2π, i ) 1, 2, 3.
2.1. Constraints. To ensure that the C3V symmetry is conserved

along the umbrella inversion path, some of the degrees of freedom
must be constrained. The AB bond lengths (see Figure 1) have to
be equal at each given instant of the inversion motion, only their
symmetric stretching being allowed. To this aim, the following
parametrization of the Radau-Smith vector lenghts, r1,r2,r3, is
adopted, in analogy with the approach of ref 11

r1 ) F cos �2 cos �1

r2 ) F cos �2 sin �1

r3 ) F sin �2

(3)

where, to achieve a one-to-one representation of the C3V
symmetry molecular configurations in terms of the new coor-
dinates, the ranges of variables must be 0 e F e ∞ and 0 e �1,
�2 e π/2. The above coordinate transformation leads to the
following kinetic energy operator

where ∆(Ω) is the so-called grand angular operator and Ω
collectively denotes all angles. It can be verified from eq 3 that

Figure 1. Geometry of an AB3 system having C3V symmetry. The z
axis coincides with the C3 symmetry axis. The particle A is taken as
the heliocenter of the system. The three AB bond lengths (solid black
lines) are equal and are denoted as rAB. Due to the symmetry, the BB
distances (dotted lines), denoted as rBB, and the DB distances (dashed
lines), denoted as rDB, are also equal. The center of mass of the three
B particles is denoted as D in the figure, while the center of mass of
the whole system is at the origin of the Cartesian reference frame.
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the symmetric stretching condition r1 ) r2 ) r3 is obtained for
�1 ) 45° and tan(�2) ) sin(�1). Therefore, the modes of
stretching are forced to be symmetric by constraining the �1

and �2 coordinates to the above fixed values (see below, section
2.2 and Figure 2 for the assignment of the correspondence
between normal modes and the hyperspherical coordinates
introduced here). Also, the C3V symmetry is retained only if the
angles �1, �2, and �3 are fixed and each one differs from the
other two by π/3 (for example �1 ) 0, �2 ) π/3, and �3 )
2π/3).

Applying the above constraints, the grand angular operator
simplifies as follows

A further constraint must be applied to the three angles ϑi, which
must be equal during the inversion motion (ϑ1 ) ϑ2 ) ϑ3). This
condition is achieved by a new parametrization of ϑ1,ϑ2,ϑ3 as

a function of a new coordinate θ and two variables �3 and �4

(see ref 12 for a discussion about the θ angle)

Inverting the above formulas, it can be seen that

where the �3 factor scales the upper limit of θ to π, as required
by the range of Legendre polynomials, which will be used as
the basis set for solving the corresponding one-dimensional
eigenvalue problem (see section 2.3). For �3 and �4, one has
that

The partial derivatives with respect to θ1, θ2, and θ3 appearing
in the grand angular operator of eq 6 can be obtained in terms
of the new coordinates θ, �3, and �4 by differentiation of the
formulas given by eqs 8 and 9

From the condition

it follows that �3 and �4 are equal to π/4 and arcsin(1/�3),
respectively. The angle θ has interesting properties, which have
been described in ref 12, where an identical coordinate was
considered. Specifically, this angle was related there to the
largest of three principal moments of inertia or to the two largest
ones in the case of an oblate top molecule (e.g., ammonia).

2.2. Details on the Coordinate Set. Low-amplitude varia-
tions of the hyperspherical coordinates considered here can be
put into relationship with the normal-mode vibrations of AB3

molecular systems. It can be seen from eq 3 that F is related to
the symmetric stretching of the system (Figure 2a), while the
two angles �2 and �1 correspond to the two asymmetric
stretching modes (Figure 2b and c). As illustrated above, θ (see
eq 8) correlates with the bending mode that leads to the umbrella
inversion (Figure 2d).

Figure 2. The normal modes of the AB3 system are schematically
illustrated, and the correspondences with the coordinates developed in
this work are assigned. The coordinate θ correctly describes the
umbrella inversion motion, as illustrated in (d).
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Let us perform another coordinate transformation on the
angles �1, �2, and �3 of eq 2, introducing the coordinates φ,
�6, and �5 so that

In this way, the variables �5 and �6 correlate with the symmetric
and asymmetric torsion around the z axis (Figure 2e and f).
The variable φ is related to the ordinary external rotation, as
well as �3 and �4, eq 9.

Referring to Figure 1 and under the constraints given in
section 2.1, the canonical point E of the Radau-Smith vectors
is calculated from the following equations

where mA is the mass of the particle A and m is the total mass
of the system (the superscript g in θg stands for geometrical;
indeed, this is the geometrical parameter strictly related to our
coordinate θ; see below). These equations are used to obtain
the expressions of the length rEB of the Radau-Smith vectors
and of the angle θ, as a function of θg and rAB

where mB is the mass of the particles B. Other useful relation-
ships are

From the above equations, it is also found that (see eq 16 of ref
12)

The lenghts of the vectors xi, (i ) 1, 2, 3; see eq 1) and the
hyperradius F are connected to the distances rEB through the
following formulas

Knowing the hyperradius F and the angle θ, it is possible to
calculate the moments of inertia of the AB3 system with respect
to the three reference axes of Figure 1

so that the total inertia is simply12

2.3. Solutions at Fixed G. A treatment similar to that
described in section 2.2 can be applied to the three angles �1,
�2, and �3 of eq 2.

In conclusion, the problem is reduced to a two-dimensional
one, whose corresponding Hamiltonian operator is

where the kinetic part T̂(x) is

The solutions of the angular part of the kinetic energy
operator, ∆(θ) (eq 21), are the Legendre polynomials Pl(θ) in
cos(θ) (l ) 0, 1, 2, ...)

that obey the orthogonality relationship

These wave functions are a convenient basis set for the
expansion of the solutions of eq 21 at a fixed value of F.

3. Hyperquantization Algorithm

To solve the angular part of eq 20, we use the so-called
hyperquantization algorithm (for a complete account, see refs
13-15). Let us give now some details about the underlying
theory and the method.

Hyperquantization is essentially a discretization technique
aimed at solving eigenvalue equations typical of chemical
problems. Therefore, as a first step, one has to introduce the
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discrete analogues of the Legendre polynomials Pl(θ). Let us
define the discrete variable � so that

where � ) -M/2, -M/2 + 1, ..., M/2 - 1, M/2 and M is the
number of discretization intervals. For our purposes, it is
convenient to scale the polynomials Pl(θ) by a normalization
factor, denoted as Kl, so that

The last equation above is strictly valid in the case that
M f ∞.

With this procedure, the Pl(�) function can be considered to
be discretized with respect not only to the degree l but also to
the variable �. The idea at the basis of the hyperquantization
algorithm consists of an inversion of roles between l and �,
treating l as an integration variable and � and �′ as labels of the
elements of the matrix H representing the Hamiltonian operator
Ĥ (see eqs 19 and 20) in the discrete polynomials basis. For a
given value of the hyperradius F, an element HF

�′,� of the matrix
H is

The M + 1 eigenvalues εF,j of the matrix H are labeled by integer
numbers j. The corresponding eigenvectors CF,j(�) are the
coefficients of the expansion of the wave function ψF,j,l in the
polynomials basis set

and it can be seen that

In other words, the eigenvectors are directly the wave functions
for which we are looking for.

The matrix elements given by eq 26 can be calculated
numerically or by the following recurrence relation

where R(l,�,M) is a residual term for which

If M is large enough, the residual functions R(l,�,M) ap-
proximately satisfies the above condition, and the coefficients
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It follows that
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while for l ) 3

The dependence of the coefficients from the grid size M changes
for different values of l, and the preferred form is the one
ensuring faster converge.

An efficient method to determine the above coefficients has
been developed by Aquilanti et al.13-15 by representing the
Legendre polynomials in terms of 3j symbols and exploiting
some well-known properties of these. The recurrence relation
satisfied by 3j symbols permits to approximate the coefficients
with a residual term R(l,�,M) that tends to zero more rapidly as
M increases. These approximate expressions are as follows
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They are similar to those reported in eq 33, with similar residual
functions R(l,�,M), as shown in Table 1.

There are two remarkable aspects involving the potential and
kinetic parts of the Hamiltonian. Equation 26 implies that no
integral on the potential part has to be calculated numerically,
a considerable advantage in terms of computation time. More-
over, the potential energy matrix is diagonal, with elements equal
to the values of the potential calculated at angles arccos(-2�/
M). Also, due to the three-term recurrence relation of eq 29,
the kinetic energy operator matrix has a tridiagonal form. As a
consequence, the matrix H is also tridiagonal, with elements
HF

�′,�, which are as follows

For the specific molecules of interest here, such as NH3 and
H3O+, the potential energy surface is symmetric with respect

to θ ) π/2, and the H matrix turns out to be doubly symmetric
(see Appendix A and ref 16 for details). Note that doubly
symmetric matrices can be partitioned into two submatrices by
a similarity transformation in such a way that the diagonalization
of H greatly simplifies. For the even simpler case of a tridiagonal
form, the transformation, for example of a 5 × 5 matrix, is
explicitly as follows

and leads to separation in 3 × 3 and 2 × 2 blocks.

4. The NH3 and H3O+ Systems

In Table 2, we report results of a basis set study dependence
for the geometrical parameters of NH3 and H3O+ systems, for
both the equilibrium and barrier (D3h planar) configurations.
Bond lengths, angles, and energies are calculated at a CCSD(T)
level. All calculations have been carried out with the Gaussian

TABLE 1: R(l,�,M) Expressions Obtained by Equation 29 Using the Coefficients Given in Equations 33 (Second Column), 34
(Third Column), and 35 (Fourth Column)a

l l ) 0, 1, 2 l ) 0, 1, 3 refs 13-15

0 0 0 0
1 0 0 0
2 0 -4/M2 -6/M
3 -40�/M3 0 (60�/M2) - (40�/M3)
4 (700�2/M4) - (35/M2) -(25/M2) + (420�2/M4) - (140/3M4) (15/M) - (35/M2) - (420�2/M3) -

(70/M3) + (700�2/M4)
5 (770�/M3) - (7560�3/M5) - (504�/M5) (630�/M3) - (5880�3/M5) + (336�/M5) -(210�/M2) + (770�/M3) + (2520�3/M4)

+ (1260�/M4) - (7560�3/M5) - (504�/M5)

a These expressions must be multiplied by the normalization factor Kl.

TABLE 2: Basis Set Dependence Study for the Gometries of NH3 and H3O+ Systems at a CCSD(T) Level of Theorya

NH3

basis set rNH(eq) [Å] rNH(bar) [Å] Θeq [deg] Eeq [hartree] Ebar [hartree] bar [cm-1]

cc-pVDZ 1.0273 1.0052 114.8749 -56.4162550 -56.3886572 6057.321
aug-cc-pVDZ 1.0237 1.0054 112.8306 -56.4255199 -56.4162550 2033.513
cc-pVTZ 1.0141 0.9952 113.0816 -56.4731973 -56.4630008 2237.985
aug-cc-pVTZ 1.0149 0.9975 112.4036 -56.4805626 -56.4717392 1936.610
cc-pVQZ 1.0125 0.9949 112.6053 -56.4930532 -56.4838236 2025.765
aug-cc-pVQZ 1.0128 0.9959 112.2686 -56.4957326 -56.4872261 1867.055
cc-pV5Z 1.0121 0.9952 112.2821 -56.4994511 -56.4908220 1893.964
aug-cc-pV5Z 1.0123 0.9956 112.2549 -56.5002838 -56.4918659 1847.608
references 1.012426 112.1526 1833.921

1845.6 ( 46.827

179228

H3O+

basis set Req [Å] Rbar [Å] Θeq [deg] Eeq [hartree] Ebar [hartree] bar [cm-1]

cc-pVDZ 0.9841 0.9762 109.5335 -76.5295323 -76.5241240 1187.044
aug-cc-pVDZ 0.9831 0.9755 107.9362 -76.5451975 -76.5414621 819.867
cc-pVTZ 0.9779 0.9701 107.3881 -76.6114941 -76.6080530 755.272
aug-cc-pVTZ 0.9792 0.9712 107.3900 -76.6156547 -76.6119957 803.098
cc-pVQZ 0.9760 0.9687 107.0655 -76.6355589 -76.6323718 699.523
aug-cc-pVQZ 0.9765 0.9691 107.1048 -76.6370193 -76.6338008 706.415
cc-pV5Z 0.9759 0.9686 107.0253 -76.6430749 -76.6399662 682.315
aug-cc-pV5Z 0.9761 0.9687 107.0191 -76.6436592 -76.6405475 682.973
references 0.974429 113.5829 65028

a The values of the geometrical parameters are given for the equilibrium (eq) and barrier (bar) configurations.

HF
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∞
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) p2

2mF2
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package.19 The data show that the energy decreases as the
number of basis functions increases. In Table 3, we list
geometrical parameters and electronic energies for the NH3

molecule at the equilibrium and barrier configurations, calculated
with an aug-cc-pVQZ basis set at MP2 and CCSD(T) levels of
theory. For the MP2 level, the normal modes of vibration and
the values of the hyperradius F and of the angle θ are also given.
Note that the hyperradius F is directly connected to the distances
rEB and rAB (the NH distance for the NH3 molecule) through
the formulas given in eq 17.

Comparing the values of the geometrical parameters at the
equilibrium and barrier configurations, it can be seen that,
moving along the umbrella inversion path, the rNH bond lengths
vary slightly; therefore, one expects only small variations for
the hyperradius F, which therefore behaves approximately as a
separable variable with respect to θ. As usual in the case of
quantum reactive scattering, the hyperradial and hyperangular
part of eqs 20 and 21 can well be treated separately.

We have used the CCSD(T) method and an aug-cc-pVQZ
basis set to calculate the full inversion energy profiles of these
molecules. This choice is justified also on the basis of previous
studies.7,8 Figure 3 compares the minimum-energy path for the
inversion of NH3 and the corresponding potential profile
obtained by solving the one-dimensional problem fixing F at
the equilibrium value. A profile obtained by fixing rNH to its
value at the equilibrium is also shown.

In Table 4, we report geometrical parameters for the H3O+

molecule at the equilibrium and barrier configurations. As for
the case of NH3, the hyperradius F is approximatively constant,
and this again justifies the separation of variables F and θ in
the solution of the corresponding eq 21.

The second step has been the calculation of the inversion
vibrational energy levels. The umbrella inversion energy levels
have been obtained by solving a one-dimensional eigenvalue
problem (see eqs 20 and 21) by the hyperquantization algorithm

(see section 3). As pointed out in previous sections, the
corresponding one-dimensional Hamiltonian involves the θ
coordinate and has a simple form (eq 21) that makes it
particularly convenient to apply the hyperquantization.13-15 The
doubly symmetric character (see at the end of section 3) and
the tridiagonal form of the matrix H to be diagonalized permits
a significant reduction of calculation time. The symmetric and
antisymmetric character of the eigenfunctions of two split levels
has been taken into account. It helps when the energy splitting
is small, as in the case of NH3, where the two lowest energy
levels are nearly degenerate but belong to states of different
symmetry. It can be of help also in adiabatic (with respect to
the hyperradius F) eigenvalue curve calculation, when, for a
given value of F, different eigenfunctions may have nearly
degenerate eigenvalues. According to the notation in the
literature, in the following, the symmetric and antisymmetric
levels will be indicated, respectively, by nν2

+ and nν2
-, where n

numbers the levels. The two lowest levels (n ) 0) are indicated
with GS+ (symmetric ground state) and GS- (antisymmetric
ground state).

From test calculations, we verified that a sufficiently large
grid for the hyperquantization algorithm for the condition of
eq 30 to be fulfilled should contain at least 3601 points (3600

TABLE 3: Geometry Parameters, Energies, and
Normal-Mode Frequencies (MP2 Level) for the Equilibrium
and Barrier Configurations of NH3, from MP2 and CCSD(T)
Level Calculationsa

MP2/aug-cc-pVQZ

geometry equilibrium barrier
barrier

height (cm-1)

rNH (Å) 1.008 (1.0124)26 0.993
θg (degrees) 68.240 (67.85)26 90.000
energy (uu) -56.50818360 -56.50062321 1659.314

normal modes (cm-1) equilibrium barrier
associated
coordinate

A1, A2′′ 1028.67 (1022)26 -826.46 θ
2E, 2E′ 1673.19 (1691)26 1585.69 �5,�6

A1, A1′ 3527.02 (3506)26 3664.49 F
2E, 2E′ 3676.50 (3577)26 3889.68 �1,�2

CCSD(T)/aug-cc-pVQZ Level

geometry equilibrium barrier
barrier

height (cm-1)

rNH (Å) 1.013 (1.0124)26 0.996
θg (degrees) 67.733 (67.85)26 90.000
rEH (Å) 1.000 0.996
θ (degrees) 69.629 90.000
energy (ua) -56.4957326 -56.4872261 1866.961 (1845.6 ( 46.8)27

a Values from the literature are in brackets. The assignment of
normal modes of vibrations to our coordinates (see section 2.2) is
reported.

Figure 3. Potential energy profiles as a function of the θg angle for
the NH3 system. Dots represent the energy values optimized with respect
to the hyperradius F. The blue curve is obtained fixing F at its
equilibrium value. The red curve is obtained fixing rNH at its equilibrium
value.

TABLE 4: As in Table 3 for the H3O+ Molecule

ump2)full/aug-cc-pvqzc

geometry equilibrium barrier
barrier

height (cm-1)

rOH (Å) 0.976 (0.9744)29 0.969
θg (degrees) 72.900 (66.42)29 90.000
energy (ua) -76.65462689 -76.65165810 651.574

normal modes (cm-1) equilibrium barrier
associated
coordinate

A1, A2′′ 886.30 (1050)26 -658.43 θ
2E, 2E′ 1693.03 (1550)26 1627.04 �5,�6

A1, A1′ 3595.95 (3760)26 3649.97 F
2E, 2E′ 3704.59 (3870)26 3808.18 �1,�2

CCSD(T)/aug-cc-pvqz Level

geometry equilibrium barrier
barrier

height (cm-1)

rOH (Å) 0.976 (0.9744)29 0.969
θg (degrees) 72.872 (66.42)29 90.000
rEH (Å) 0.970 0.969
θ (degrees) 74.219 90.000
energy (ua) -76.6370193 -76.6338007 706.401(650)28
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intervals) to guarantee accurate results such as those presented
in Tables 5 and 6. Unfortunately, the ab initio calculation of
the grid points to be used in the hyperquantization is very
computer-demanding. To circumvent this problem, we calculated
a reduced number of ab initio grid points and obtained additional
points by a four-point Lagrange interpolation (see ref 20). Figure
4 shows the Lagrange interpolation function of 181 F-fixed ab
initio points. From the interpolation functions, we obtained 3601
grid points used to build up the grid for the hyperquantization
algorithm, avoiding long calculations of ab initio points that
would not improve the accuracy of the energy levels.

4.1. NH3 Potential and Umbrella Inversion Levels. The
angle between the NH bonds and the C3 molecular symmetry
axis is denoted as θg in Figure 1. This geometrical parameter
has been used to calculate the inversion potential energy profile
from which the vibrational energy levels corresponding to the
inversion motion have been obtained. Equation 14 gives the
coordinate transformation that connects θg to the hyperangle θ,
leading, as pointed out in section 2.2, to an extremely simple
one-dimensional Hamiltonian operator (eq 21) that has been

solved by the hyperquantization algorithm to obtain the inversion
energy levels. Figure 3 shows the potential energy of NH3 as a
function of the angle θg (see Figure 1). Dots represent 19
optimized ab initio points, obtained allowing for the NH bond
length to relax. The same calculations carried out keeping fixed
the NH distance at the equilibrium value (red line) show
significant deviations with respect to the optimized ones. This
means that the separability of the NH distances and the θg

inversion coordinate gets lost. Figure 3 also shows that a profile
obtained from calculations carried out with the hyperradius F
at its equilibrium value, without optimization (blue line), appears
to coincide with the optimized profile of the umbrella inversion
path. This is an indication for us that in extensive calculations
of ab initio points to be used as a grid for the hyperquantization
method, the hyperradius can be frozen at its equilibrium value.
The two symmetric minima (see also Table 3) are at θg ) 67.7
and 112.3°. The height of barrier (θg ) 90° and θ ) 90°)
between the two symmetric wells is 1867 cm-1. These results
are summarized in Table 3, where frequencies of the normal
modes of vibration are also reported for the equilibrium and
barrier configurations along with their assignment to hyper-
spherical coordinates. The mode resembling a low-amplitude
umbrella inversion motion is the lower-frequency one with A1
symmetry and corresponds to our inversion coordinate θ. Due
to the difference in frequency, this mode can be considered to
be approximately separable with respect to the others, even
farther from the equilibrium configuration. The θ coordinate
tends to the limit of this mode for low amplitudes but enjoys
separability also for a large-amplitude motion along the umbrella
inversion path.

Figure 5 shows the moments of inertia, taken with respect to
the x, y, and z axes of the NH3 molecule (Figure 1), as a function
of the hyperangle θ. The values are obtained by geometry
optimization with respect to F. The data are compared with those
calculated using the formulas of eqs 19, involving the coordi-
nates θ and F. It is found that in the range of θ (see eq 14) that
contains the two symmetric minima and the barrier of the
potential profile (in the graph, where continuous curves and
points coincide), the moments of inertia obtained from ab initio
calculations and those calculated by the formulas are in very
good agreement, meaning that θ and F (which has been frozen)
reproduce with accuracy the inertia of the system. This further
confirms that consideration of θ catches the essential of the
inversion motion.

In Table 5, we show the inversion levels of the NH3 molecule
obtained by solving the eigenvalue problem for the operator of
eq 21 by the hyperquantization method at fixed values of the
hyperradius F. The inversion energy levels have been obtained

TABLE 5: Umbrella Inversion Energy Levels of NH3 for
Three Different Fixed Values of the Hyperradius Ga

Fe b Fm c Fb d surface7 theory7 exptl.21

GS+ 0.000 0.000 0.000 0.000 0.00 0.00
GS- 1.257 1.309 1.361 1.258 0.96 0.793
ν2
+ 904.523 903.543 902.607 904.504 922.92 932.43

ν2
- 956.521 957.170 957.883 956.527 964.74 968.12

2ν2
+ 1545.695 1544.346 1543.153 1545.693 1577.97 1598.47

2ν2
- 1877.746 1880.517 1883.393 1877.792 1882.32 1882.18

3ν2
+ 2388.918 2393.256 2397.751 2388.998 2387.96 2384.17

3ν2
- 2925.279 2932.099 2939.049 2925.404 2909.76 2895.61

4ν2
+ 3512.634 3521.687 3530.906 3512.787 3485.55

4ν2
- 4136.877 4148.248 4159.781 4137.072 4093.93

a The energies have been obtained using inversion potential
energy profiles calculated at the CCSD(T)/aug-cc-pVQZ level and
minimized with respect to all of the other degrees of freedom. A
hyperquantization grid of 3601 interpolated points has been used.
Theoretical and experimental values for comparison are also
reported in the last two columns. The fifth column reports the
energy levels calculated using the potential energy surface
developed in ref 7, freezing F at its equilibrium value. The values
are taken with respect to the zero-point energy, which is 506.530,
506.574, and 506.863 cm-1 for F frozen at equilibrium, the middle
point, and the barrier value respectively, and 506.463 cm-1 for
values obtained from the surface of ref 7. b F frozen at the
equilibrium value. c F frozen at the middle point value. d F frozen at
the barrier value.

TABLE 6: Umbrella Inversion Energy Levels for the H3O+

Systema

surface8 theory8 exptl.23-25

GS+ 0.000 0.00 0.000
GS- 59.196 52.29 55.3484
ν2
+ 584.979 588.31 581.18

ν2
- 972.321 959.75 954.40

2ν2
+ 1502.023 1482.12 1475.44

2ν2
- 2086.903 2056.61

3ν2
+ 2724.585 2683.15

3ν2
- 3406.702 3352.54

4ν2
+ 4127.287

4ν2
- 4882.156

a The energy is minimized with respect to all of the other degrees
of freedom. The second column reports the results obtained using a
grid of 3601 points for the hyperquantization algorithm and the
potential energy surface of ref 8. The zero-point energy is 372.772
cm-1. Theoretical and experimental data are reported for compa-
rison.

Figure 4. Lagrange interpolation (gray line) of the ab initio points
(represented with dots) calculated with F frozen at the equilibrium value
(see Figure 3). The values of the potential energy between the ab initio
points are evaluated using a four-point Lagrange interpolation. See ref
20 for details.
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using three different potential profiles calculated with the
hyperradius F frozen at its equilibrium, barrier, and middle point
between the minimum and the barrier values. Comparison is
made with results available in the literature from both theory7

and experiments21 (sixth and seventh columns of the table).
As a test for our method, the same levels calculated using

the potential energy surface developed by Halonen and co-
workers7 are reported and found to be in substantial agreement
with those obtained from our potential profile, according to the
fact that same level calculations have been carried out in the
two cases.

While results are in general good agreement with those in
the literature, major discrepancies are found in the range of
energies similar to the barrier height where stronger coupling
between the adiabatic eigenvalue curves is to be expected.

4.2. H3O+ Potential and Umbrella Inversion Levels. Table
4 shows the structural data obtained for the H3O+ molecule.
This system also presents two symmetric minima at θg ) 72.9
and 107.1°. The barrier height at the planar configuration is
706.401 cm-1, smaller than that for NH3. Tunnel splitting is
expected to be a relevant effect, and this is confirmed by the
difference in energy between GS+ and GS- states shown in
Table 6, reporting the inversion energy levels. As a consequence,
only two states are found in the region of energies lower than
the barrier height. The energy levels have been obtained using
a potential energy surface developed by Halonen and co-
workers.8 It is seen that the energy level values calculated by
the hyperquantization method are in good agreement with those
obtained by a corresponding two-dimensional calculation.8

5. Discussion

The hyperquantization algorithm may seem demanding. For
example, routinely, we used a grid of 3600 points that requires
the diagonalization of a square matrix of order 3601. In the
considered cases, the symmetry properties of the potential profile
for the inversion coordinate θ (section 3) allow for a symmetry
decomposition of the matrix into two submatrices of order 1801
(symmetric wave functions) and 1800 (antisymmetric wave
functions). Our results for the umbrella levels, shown in Tables
5 and 6, are obtained by a one-dimensional calculation, while
the values from literature required at least a two-dimensional
approach for comparable accuracy. As can be seen, the

agreement between the levels obtained here and those of the
literature is quite good. In some cases and for particular
applications, also to different molecules, a two-dimensional
calculation may be necessary to guarantee sufficient or better
accuracy.

The Lanczos diagonalization algorithm,22 well suited for large
sparse matrices, is of great help for our approach because of
the tridiagonal form of the matrix H. This is true especially
when the hyperquantization calculation scheme has to be
repeated many times, for example, at several different values
of the hyperradius F, which is the case of adiabatic eigenvalue
calculation when the eigenvalues of the one-dimensional Hamil-
tonian operator used to calculate the inversion levels have to
be obtained at many different values of F. The calculation
scheme for adiabatic eigenvalue curves starts by setting F equal
to a large value in the operator given in eq 20. Under this
condition and the hypothesis of C3V symmetry conservation, the
potential energy function V(θ) tends to that of a square well,
being approximately constant for 0 , θ , π, and steeply
increases at the limits θ ) 0 and π. Each wave function can be
approximated as a Legendre polynomial and, in the propagation
of eigenvalues, these wave functions are used as a starting
approximation for the solutions at the next value of F, smaller
than the previous one. The scheme can then be repeated
iteratively (see Figure 6) over the desired range of F, so that
the propagation of the eigenvalues, either considering or
neglecting the coupling terms, can then be efficiently performed.

Figure 6 shows the adiabatic eigenvalue curves, with respect
to the rEB parameter (see Figure 1), for NH3 and H3O+, as
obtained using, for the two molecules, the potential energy
surfaces developed in refs 14 and 15. Note that rEB is directly
connected to the hyperradius F by eq 17. Symmetric and
antisymmetric eigenvalues are plotted along with the valley
bottoms (the minimum energy as a function of F) and ridges
(the corresponding barrier heights) as a function of the rEB

distance for both symmetric and antisymmetric wave functions.
Various isotopic variants have also been considered.

6. Final Remarks and Perspectives

In this work, we have shown that the umbrella inversion
motion, typical of AB3-type molecular systems, can be described
with enough accuracy using Radau-Smith orthogonal vectors
and parametrizing them by means of four-body hyperspherical
coordinates, finding them particularly suited to describe the
umbrella inversion motion, enforcing C3V symmetry. We devised
a one-dimensional model, freezing the remaining degrees of
freedom to their equilibrium values, where the hyperangle θ
catches all of the relavant aspects of the inversion dynamics.
We have studied the two prototypical molecules NH3 and H3O+,
first demonstrating that the hyperspherical parametrization easily
leads to a two-dimensional model involving the hyperangle θ
and the hyperradius F. The model has been shown to be
separable, the value of the hyperradius being conserved, when
the molecule undergoes the inversion. The separability has been
tested by ab initio calculations carried out by freezing F at
different values, obtaining geometrical parameters for the
molecules at their equilibrium and barrier configurations. The
results show that the hyperradius can fairly be considered to be
constant at its equilibrium value, and this ensures a good
description of the inversion potential energy profile. From a one-
dimensional eigenvalue problem, we have obtained accurate
values of the inversion energy levels, comparable to those
obtained by two-dimensional models so far adopted. The
hyperquantization algorithm, so far used in quantum scattering

Figure 5. Moments of inertia with respect to the z axis (red line) and
the x and y axes (blue line) of the NH3 molecule (see Figure 1) as a
function of the coordinate θ. The points represent the values of the
moments of inertia calculated from ab initio geometries obtained at
the CCSD(T) level with an aug-cc-pVQZ basis set and optimized with
respect to the hyperradius F. The continuous lines represents the values
obtained from eq 18 with F at its equilibrium value. The units are m
Feq

2 .
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calculations, has been applied to the solution of the eigenvalue
problem for such an internal molecular dynamics study. The
issue of the necessarily large discretization grid needed for this
method, the possible source of computation time growth, has
been circumvented by an efficient interpolation of reduced sets
of ab initio points, a procedure which can be valid in general
cases, not restricted to the application of the hyperquantization
algorithm.

Results obtained in this work encourage us to recommend
the angle θ for the description of the umbrella inversion in other
systems. The one-dimensional approach permitted by the
orthogonal coordinates and the performance of the hyperquan-
tization algorithm should allow for a rapid exploration of the
behavior of a variety of systems with C3V symmetry. As a
perspective, there is the generalization of our procedure to treat
umbrella inversions in general. In particular, this is expected to
be useful for quantum mechanical dynamics of molecular
collisions.

The connection of four-body hyperspherical coordinates to
normal modes of vibration of NH3 and H3O+ has been also

considered. This issue, being of general interest, will be the
object of future work.

Acknowledgment. We acknowledge Andrea Beddoni for the
contribution to the early stage of this research and for useful
discussions. M.R. acknowledges Dimitri Mugnai of the Depart-
ment of Mathematics of Perugia for useful discussions about
mathematical details.

A. On the Centrosymmetric and Centroskew Matrices. (See
also ref 16). The J is used to indicate square matrices with
elements that obey to the relation Ji,j ) δn+1-i,j, where n represent
the order of the matrices. For example, if n ) 3

A matrix M is centrosymmetric if

Figure 6. Adiabatic eigenvalues (calculated at fixed values of rEB; see Figure 1)14,15 for NH3 and H3O+ systems obtained for the two-dimensional
potential energy surfaces of refs 7 and 8. Blue line: valley bottoms; red line: ridges; dashed line: symmetric wave functions; dotted line: antisymmetric
wave functions. The various panels show different isotopic variants.

J ) (0 0 1
0 1 0
1 0 0

) (38)
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It can be shown that for n even such a matrix can be written in
terms of two matrices A and B of order n/2

For odd n, one has

where the matrices A and B have order (n - 1)/2, c is a scalar,
and a and b are two vectors of order (n - 1)/2. For even n, one
defines an orthogonal matrix K

where I is the identity matrix and the order of I and J matrices
is n/2, which block-diagonalizes the M matrix

For odd n, the matrix K is

where the order of the matrices I and J is (n - 1)/2 and

A matrix is “doubly symmetric” if A and B are symmetric with
respect to both the principal and the secondary diagonals. If n
is odd, the vector b is the transpose of a. Reference 16 treats
also “skew-symmetric” matrices, which are equal to their
transpose with a change in sign and “centro skew” if M )
-JMJ.
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